G ury Z vilichovsky* and Vadim G urvich

Department of Organic C hemistry, The H ebrew U niversity of J erusalem, J erusalem 91904, I srael

Optically active derivatives of L -isoxazolo[2,3-a]pyrimidin-4-ylalanine are prepared by the combination of Birch reduction of the phenyl ring of L -phenylalanine, followed by ozonolysis and condensation with 3-amino-5-oxo-4-phenyl-2,5-dihydroisoxazole. R ing cleavage of the five-membered ring by reduction, oxidation and nucleophiles gives pyrimidylalanine derivatives.

Introduction

A mino acids are enjoying unprecedented renaissance in virtually all disciplines. M any nonproteinogenic α-amino acids have been found to have biological and pharmacological activities ${ }^{1-9}$ and are also incorporated in semisynthetic penicillins, ${ }^{10}$ cephalosporins and biologically active peptides. ${ }^{11,12}$ Several pyrimidyIalanine derivatives occur in plants and possess antitumour activity by virtue of their ability to inhibit an enzyme system in the biosynthesis of purines. ${ }^{13-16}$ DL-2-, 4- and 5-pyrimidylalanines were prepared by H aggerty in 1965 from the corresponding methylpyrimidine derivatives. ${ }^{17}$ An approach to the transformation of L -phenylalanine into other optically active amino acids with the retention of optical activity was shown recently. ${ }^{18,19}$ It consists of the combination of Birch reduction of the phenyl ring, ozonolysis of the resulting hexadienyl derivative $\mathbf{1}$ to yield the dicarbonyl intermediate $\mathbf{2}$, and conden-

Scheme 1 Reagent: $\mathrm{i}, \mathrm{O}_{3}$
sation of this with dinucleophiles to give heterocyclic amino acid derivatives $\mathbf{3}$. In the case of phenylalanine as the starting material it was shown that the chiral centre was not affected. It was described as a one-pot reaction, mainly because of the tendency of the dicarbonyl intermediate to undergo cyclization to a cyclic derivative 5 when isolation was attempted. ${ }^{20}$ In the case of the conversion of phenylglycine derivatives the cyclization product which was isolated was the pyrrole derivative $4 .^{18}$

Results and discussion

In the present work 3 -aminoisoxazole derivative 7 was introduced as a dinucleophile into the ozonolysis mixture of the ester of the protected cyclohexadienylalanine $\mathbf{6}$, resulting in the bicyclic system 8. This condensation proceeds under acid catalysis. It was assumed that the aminopropionic chain is linked to the pyrimidine ring at position 5 rather than at position 7 , excluding the regioisomer 9 . The regioselectivity of this condensation was demonstrated earlier, where the structure was confirmed by single-crystal X-ray analysis. ${ }^{21}$ The NMR spectra

of the product which was obtained here were compatible with structure 8 rather than structure 9. The orange-yellow crystalline isoxazolo[2,3-a]pyrimidylalanine derivative 8 is stable on the shelf, provided it is protected from light. U pon reduction of the $\mathrm{N}-\mathrm{O}$ bond in the bicyclic system with zinc in acetic acid the isoxazole ring is cleaved. The intermediate acid 8a which is formed is unstable and undergoes spontaneous decarboxylation, yielding the L -(2-benzylpyrimidin-4yl)alanine derivative 10. Removal of both the benzoyl and ester groups from compound 10 was achieved by acid hydrolysis, and gave the unprotected amino acid 11.

Heating of the isoxazolopyrimidylalanine derivative 8 in ethanol gave the benzyl ether derivative 13. The mechanism for these rearrangements was described earlier. ${ }^{6}$ The nucleophilic ethanol opens the five-membered ring to yield an unstable carboxylic acid derivative $\mathbf{1 2}$ which undergoes spontaneous decarboxylation to yield product 13. This ether was obtained as a 5:4 diasteroisomeric mixture.

Scheme 3 Reagent: i, [H]

Scheme 4 Reagent: i, EtOH
It was also possible to open the isoxazole ring by using a primary amine. The amine which was used was the optically active (R)-(+)- α-aminoethylbenzene. The resulting diamino acid derivative 14 was obtained as a 1 : 1 mixture of two diasteroisomers which could be separated by chromatography.

Oxidative cleavage of the isoxazole ring by heating of the isoxazolone 8 in dimethyl sulfoxide(D M SO) ${ }^{22}$ afforded the corresponding ketoamino acid derivative 15. Removal of both of

Scheme 5 Reagent: i, D M SO
the benzoyl and the ester protecting groups was achieved by hydrochloric acid, and yielded the free hydrochloride 16. Condensation of the keto ester 15 with 2,4-dinitrophenylhydrazine gave the hydrazone 17.

Experimental

G eneral methods

M ps were taken in a Thomas H oover instrument. N M R Spectra were taken with Bruker W P-200 and Bruker AM X-300 spectrometers. J Values are given in Hz. Optical rotations were measured by a Perkin-Elmer 141 polarimeter, and $[a]_{\mathrm{D}}$-values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Chromatographic separation was carried out with silica gel (230-400 mesh) in a $450 \times 10 \mathrm{~mm}$ column. Light petroleum refers to the fraction with distillation range $40-60^{\circ} \mathrm{C}$.

M ethyl N-benzoyl-3-(2-oxo-3-phenyl-2H-isoxazolo[2,3-a]-pyrimidin-5-yl)alaninate 8

M ethyl L-N -benzoyl-3-(cyclohexa-1,4-dienyl)alaninate 6 (0.5 g) in $10 \mathrm{~cm}^{3}$ of dichloromethane was added to a saturated solution of ozone in dichloromethane ($15 \mathrm{~cm}^{3}$) at $-78{ }^{\circ} \mathrm{C}$, buffered with
0.2 g of NaHCO_{3}. M ore ozone was added until the blue colour persisted. The mixture was purged with nitrogen, dimethyl sulfide $\left(5 \mathrm{~cm}^{3}\right)$ was added, and the mixture was allowed to warm to room temperature overnight. The solution was filtered and the solvent was removed under reduced pressure. The residue was dissolved in ethanol ($10 \mathrm{~cm}^{3}$) and 3 -amino-4-phenylisoxazol$5(2 \mathrm{H})$-one $7(1.0 \mathrm{~g})$ and 10 m ethanolic $\mathrm{HCl}\left(1 \mathrm{~cm}^{3}\right)$ were added. The solution was refluxed for 10 min under nitrogen with protection from light. The solvent was removed under reduced pressure and the crude product was extracted with ethyl acetate and chromatographed with a solvent gradient: ethyl acetatelight petroleum (1:3-2:1) to yield compound 8 as orangeyellow crystals ($0.25 \mathrm{~g}, 52 \%$), mp $146-147{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 65.99; H, 4.32; N, 10.16. Calc. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}$: C, $66.18 ; \mathrm{H}, 4.59 ; \mathrm{N}, 10.07 \%$); $[\alpha]_{\mathrm{D}}^{25}-5$ (c 1, EtOH); $\delta_{\mathrm{H}^{-}}$ (${ }^{2} \mathrm{H}_{6}$]D M SO) 9.08 (d, J 7.2, 1 H, pyr-CH), 8.94 (d, J $\mathrm{NH}_{\mathrm{N}, \mathrm{c}} 7.7,1$ H, NH), $8.15(\mathrm{~d}, \mathrm{~J} 8.4,2 \mathrm{H}, \mathrm{o}-\mathrm{Ph}), 7.83\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{o}, \mathrm{m}} 7.2,2 \mathrm{H}\right.$, o-PhCO), 7.28-7.56 (m, 5 H, m-, p-PhCO + m-Ph), 7.13 (t, J 7.6, 1 H, p-Ph), 6.96 (d, J $7.2,1$ H, pyr-CH), 5.13 (dt, J ${ }_{\alpha, N H} 7.6$, $\left.\mathrm{J}_{\alpha, \beta} 6.3,1 \mathrm{H}, \alpha-\mathrm{H}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}\right.$, ester) and $3.39\left(\mathrm{~m}, 2 \mathrm{H}, \beta-\mathrm{H}_{2}\right)$.

M ethyl N -benzoyl-3-(2-benzylpyrimidin-4-yl)alaninate 10

M ethyl $\quad \mathrm{N}$-benzoyl-3-(2-oxo-3-phenyl-2H-isoxazolo[2,3-a]-pyrimidin-5-yl)alaninate 8 (0.4 g) was dissolved in acetic acid (50 cm^{3}), Zn powder (0.4 g) was added and the mixture was stirred for 5 h at room temperature before being filtered and the solvent was removed under reduced pressure. The residue was chromatographed with ethyl acetate-light petroleum (1:1) to give compound $10(0.15 \mathrm{~g}, 42 \%)$ as an oil (Found: C, 70.87; H,5.90; N , 11.07. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 70.38 ; \mathrm{H}, 5.64 ; \mathrm{N}, 11.19 \%$); $[a]_{\mathrm{D}}^{25}$ +98 (c 1, dichloromethane); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.57$ (d, J $5.2,1 \mathrm{H}$, pyr-CH), 7.63 ($\mathrm{d}, \mathrm{J}_{0, m} 8.5,2 \mathrm{H}, \mathrm{o}-\mathrm{PhCO}$), 7.49 ($\mathrm{d}, \mathrm{J}_{\mathrm{NH}, a} 7.4,1 \mathrm{H}$,
 p-PhCO + m-, p-Ph), 7.02 (d, J 5.2, 1H, pyr-CH), $5.21\left(\mathrm{dt}, \mathrm{J}_{\mathrm{J}, \mathrm{NH}}\right.$ 7.4, J $j_{\beta, \beta} 4.6,1 \mathrm{H}, \alpha-\mathrm{H}$), $4.24(\mathrm{~s}, 2 \mathrm{H}$, benzoyl), 3.68 (s, 3 H , ester) and $3.45\left(\mathrm{dd}, \mathrm{J}_{\beta, \mathrm{c}} 4.6, \mathrm{~J}\right.$ gem $\left.16.1,2 \mathrm{H}, \beta-\mathrm{H}_{2}\right)$.

3-(2-B enzylpyrimidin-4-yl)alanine hydrochloride 11

M ethyl N -benzoyl-3-(2-benzylpyrimidin-4-yl)alaninate 10 (0.2 g) was dissolved in $5 \mathrm{~m} \mathrm{HCl}\left(20 \mathrm{~cm}^{3}\right)$ and the solution was refluxed for 4 h . The reaction mixture was washed successively with diethyl ether $\left(3 \times 10 \mathrm{~cm}^{3}\right)$ and ethyl acetate $\left(1 \times 10 \mathrm{~cm}^{3}\right)$, mixed with decolorizing carbon (0.1 g) and filtered. The water was removed under reduced pressure to give the salt 11 (0.14 g , 90%) as a semisolid (Found: C, 57.87; H, 4.91; N, 13.99. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{HCl}$ requires $\mathrm{C}, 57.52 ; \mathrm{H}, 5.18 ; \mathrm{N}, 14.38 \%$); $[a]_{\mathrm{D}}^{25}$ $-7\left(\mathrm{c} 1, \mathrm{H}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 8.80(\mathrm{~d}, \mathrm{~J} 5.1,1 \mathrm{H}, \operatorname{pyr}-\mathrm{CH}), 7.3-7.49$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{Ph}+\mathrm{pyr}-\mathrm{CH}$) , $4.51\left(\mathrm{~m}, 3 \mathrm{H}, \alpha-\mathrm{H}+\mathrm{CH}_{2}\right)$ and 3.66 $\left(d, J_{\beta, \alpha} 5.3,2 H, \beta-H_{2}\right)$.

M ethyl N-benzoyl-3-\{2-[ethoxy(phenyl)methyl]pyrimidin-4-

yl falaninate 13
M ethyl N -benzoyl-3-(2-oxo-3-phenyl-2H -isoxazolo[2,3-a]pyr-imidin-5-yl)alaninate $8(0.25 \mathrm{~g})$ was dissolved in ethanol (40 cm^{3}). The mixture was refluxed under nitrogen with protection from light for 48 h . The solvent was evaporated off under reduced pressure. The residue was chromatographed, with ethyl acetate-light petroleum gradient ($1: 1-3: 1$) as eluent. The isolated product 13 was an oily $5: 4$ mixture of two diastereoisomers ($0.11 \mathrm{~g}, 44 \%$) (Found: C, 68.48; H, 5.71; N, 9.61. $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 68.72 ; \mathrm{H}, 6.01 ; \mathrm{N}, 10.02 \%)$; $[a]_{\mathrm{D}}^{25}+52\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ major: 8.63 (d, J $5.1,1 \mathrm{H}$, pyr-CH), 7.75 (d, J ${ }_{0, \mathrm{~m}} 6.7$, $2 \mathrm{H}, \mathrm{o}-\mathrm{PhCO}), 7.25-7.55(\mathrm{~m}, 9 \mathrm{H}, \mathrm{m}-\mathrm{p}-\mathrm{PhCO}+\mathrm{Ph}+\mathrm{NH}$), 7.05 (d, J 5.1, 1H, pyr-CH), $5.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.27(\mathrm{~m}, 1 \mathrm{H}, \alpha-$ H), 3.58 (s, 3 H , ester), 3.32-3.56 m, 4 H , ethyl $+\beta-\mathrm{H}_{2}$) and 1.27 ($\mathrm{t}, \mathrm{J} 7.0,3 \mathrm{H}$, ethyl); minor: 8.62 (d, J $5.1,1 \mathrm{H}$, pyr-CH), 7.74 (d, Jo,m 6.7, $2 \mathrm{H}, \mathrm{o}-\mathrm{PhCO}$), $7.25-7.55(\mathrm{~m}, 9 \mathrm{H}, \mathrm{m}-\mathrm{p}-$ $\left.\mathrm{PhCO}^{0, \mathrm{~m}}+\mathrm{Ph}+\mathrm{NH}\right), 7.07(\mathrm{~d}, \mathrm{~J} 5.1,1 \mathrm{H}, \mathrm{pyr}-\mathrm{CH}), 5.57(\mathrm{~s}, 1 \mathrm{H}$, CH), 5.27 ($\mathrm{m}, 1 \mathrm{H}, \alpha-\mathrm{H}$), 3.69 ($\mathrm{s}, 3 \mathrm{H}$, ester), 3.32-3.56 (m, 4 H , ethyl $+\beta-\mathrm{H}_{2}$) and $1.25(\mathrm{t}, \mathrm{J} 7.0,3 \mathrm{H}$, ethyl).

Ring opening of compound 8 by (R$)-(+)-\alpha$-aminoethylbenzene

M ethyl N -benzoyl-3-(2-oxo-3-phenyl-2H-isoxazolo[2,3-a]pyr-imidin- 5 -yl) alaninate $8(0.15 \mathrm{~g}$) was dissolved in 1,4-dioxane (30 cm^{3}), and (R$)-(+)-\alpha$-aminoethylbenzene ($0.15 \mathrm{~cm}^{3}$) was added. The mixture was refluxed under nitrogen with protection from light for 48 h . The solvent was evaporated off under reduced pressure. The residue was chromatographed with ethyl acetatelight petroleum gradient ($1: 3-1: 1$). The first isolated diastereoisomer of compound 14 was an oil (free base) ($0.06 \mathrm{~g}, 34 \%$) (Found: C, 72.57; H, 6.41; N, 11.33. $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, $72.85 ; \mathrm{H}, 6.11 ; \mathrm{N}, 11.47 \%) ;[a]_{\mathrm{D}}^{25}+218\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 8.51 (d, J 5.2, 1 H, pyr-CH), 7.74 (dd, J o,m 7.0, J o,p 1.6, 2 H, oPhCO), 7.27-7.65 (m, $14 \mathrm{H}, \mathrm{m}-\mathrm{p}-\mathrm{PhCO}+\mathrm{Ph}+\mathrm{NH}$), $6.99(\mathrm{~d}$, J $5.2,1 \mathrm{H}, \operatorname{pyr}-\mathrm{CH}$), $5.30\left(\mathrm{dt}, \mathrm{J}_{\alpha, N H} 7.9, \mathrm{~J}_{\alpha, \beta} 4.5,1 \mathrm{H}, \alpha-\mathrm{H}\right), 4.79$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), 3.73 (s, 3 H, ester), 3.36-3.68 (m, $3 \mathrm{H}, \mathrm{CH}+\beta-\mathrm{H}_{2}$) and 1.41 (d, J 6.5, $3 \mathrm{H}, \mathrm{Me}$).

The second isolated diastereoisomer of compound 14 was an oil (free base) ($0.05 \mathrm{~g}, 28 \%$) (Found: C, 72.82; H, 6.23; N, 11.18%); $[a]_{\mathrm{D}}^{25}+96$ (c 1, chloroform); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.58$ (d, J 5.1, 1 H, pyr-CH), 7.78 (d, Jo,m 7.7, 2 H , o-PhCO), 7.25-7.66 (m, 14 H, m-, p-PhCO + Ph + NH), 7.02 (d, J 5.1, 1 H, pyr-CH), 5.21 (dt, J ${ }_{\alpha, N H} 8.3, J_{\alpha, \beta} 4.4,1 \mathrm{H}, \alpha-\mathrm{CH}$), $5.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$), $3.37-3.66$ $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}+\beta-\mathrm{H}_{2}\right), 3.48(\mathrm{~s}, 3 \mathrm{H}$, ester) and $1.38(\mathrm{~d}, \mathrm{~J} 6.4,3 \mathrm{H}$, Me)

M ethyl N-benzoyl-3-(2-benzoyl)pyrimidin-4-yl)alaninate 15

M ethyl N -benzoyl-3-(2-oxo-3-phenyl-2H -isoxazolo[2,3-a]pyr-imidin-5-yl)alaninate $8(0.5 \mathrm{~g})$ was dissolved in D M SO $\left(5 \mathrm{~cm}^{3}\right)$ and heated for 5 min at $135^{\circ} \mathrm{C}$. The reaction mixture was loaded on a silica gel column and the products were eluted with ethyl acetate-light petroleum (1:1) to give compound $\mathbf{1 5}$ (0.4 g , 86%) as an oil (Found: C, 67.59; H,5.09; N, 10.66. C $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 67.84; H , 4.92; N, 10.80\%); [a] $]_{D}^{25}+113$ (c 1, chloroform); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.85(\mathrm{~d}, \mathrm{~J} 5.1,1 \mathrm{H}, \mathrm{pyr}-\mathrm{CH}), 8.00\left(\mathrm{dd}, \mathrm{J}_{\mathrm{om}} 7.0\right.$, $\mathrm{J}_{\mathrm{o}, \mathrm{p}} 1.2,2 \mathrm{H}, \mathrm{o}-\mathrm{PhCO}$), $7.80\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{NH}, \alpha} 7.7,1 \mathrm{H}, \mathrm{NH}\right.$), 7.67 (dd, Jom 7.1, Jo,p 1.6, 2 H, o-Ph), 7.28-7.59 (m, 7 H, m-, $\mathrm{p}-\mathrm{PhCO}+\mathrm{m}-, \mathrm{p}-\mathrm{Ph}+\mathrm{pyr}-\mathrm{CH}), 5.28\left(\mathrm{dt}, \mathrm{J}_{\alpha, N H} 7.7, \mathrm{~J}_{\alpha, \beta} 4.7,1 \mathrm{H}\right.$ $\alpha-\mathrm{H}$), 3.65 (s, 3 H , ester) and 3.56 (dd, J J, $4.7, \mathrm{~J}_{\text {gem }} 15.8,2 \mathrm{H}$, $\beta-\mathrm{H}_{2}$).

3-(2-Benzoylpyrimidin-4-yl)alanine hydrochloride 16

M ethyl N-benzoyl-3-(2-benzoylpyrimidin-4-yl)alaninate 15 $(0.05 \mathrm{~g})$ was dissolved in $5 \mathrm{~m} \mathrm{HCl}\left(20 \mathrm{~cm}^{3}\right)$ and the solution was refluxed for 4 h . The reaction mixture was washed successively with diethyl ether $\left(3 \times 10 \mathrm{~cm}^{3}\right)$ and ethyl acetate ($1 \times 10 \mathrm{~cm}^{3}$) and the solvent was removed under reduced pressure to give the salt 16 ($0.03 \mathrm{~g}, 76 \%$), $\mathrm{mp}>300^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 54.32$; $\mathrm{H}, 4.43$; $\mathrm{N}, 13.92 . \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{HCl}$ requires $\mathrm{C}, 54.64 ; \mathrm{H}, 4.59 ; \mathrm{N}$, 13.65\%); [a] $]_{D}^{25}-27\left(c 1, \mathrm{H}_{2} \mathrm{O}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 8.81(\mathrm{~d}, \mathrm{~J} 5.3,1 \mathrm{H}$ pyr-CH), 7.80 (d, J o,m $8.0,2$ H, o-PhCO), 7.69 (d, J $5.3,1$ H pyr-CH), 7.66 (dd, $\mathrm{J}_{\mathrm{p}, \mathrm{m}} 6.4, \mathrm{~J}_{\mathrm{p}, \mathrm{o}} 1.1,1 \mathrm{H}, \mathrm{p}-\mathrm{PhCO}$), 7.49 (dd $\left.\mathrm{J}_{\mathrm{m}, \mathrm{p}} 6.4, \mathrm{~J}_{\mathrm{m}, \mathrm{o}} 8.0,2 \mathrm{H}, \mathrm{m}-\mathrm{PhCO}\right), 4.61\left(\mathrm{t}, \mathrm{J}_{\alpha, \beta} 6.0,1 \mathrm{H}, \alpha-\mathrm{H}\right)$ and $3.61\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{\beta}, \alpha} 6.0,2 \mathrm{H}, \beta-\mathrm{H}_{2}\right)$.

2,4-D initrophenylhydrazone derivative 17 of ester 15

M ethyl N -benzoyl-3-(2-benzoylpyrimidin-4-yl)alanine 15 (0.05 g) was dissolved in ethanol ($1 \mathrm{~cm}^{3}$), 2,4-dinitrophenylhydrazine reagent ${ }^{23}\left(2 \mathrm{~cm}^{3}\right)$ was added, and the mixture was boiled for 4 min . The product 17 precipitated on cooling ($0.0 .5 \mathrm{~g}, 68 \%$), mp 154-155 ${ }^{\circ} \mathrm{C}$ (Found: C, 59.27; H, 4.19; N, 17.26. $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{7}$ requires $\mathrm{C}, 59.05 ; \mathrm{H}, 4.07 ; \mathrm{N}, 17.22 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 15.17(\mathrm{~s}, 1 \mathrm{H}$, NH), $9.16\left[d, J 2.43,1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2}\right.$], $9.00(\mathrm{~d}, \mathrm{~J} 5.1,1 \mathrm{H}$, pyr-CH), 8.24-8.42 [m, $\left.2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{~N} \mathrm{O}_{2}\right)_{2}\right], 7.68$ (dd, J $\mathrm{o}_{\mathrm{o}, \mathrm{m}} 6.3$, J $\mathrm{J}_{0, p}$ 2.2, $4 \mathrm{H}, \mathrm{o}-\mathrm{PhCO}+0-\mathrm{Ph}), 7.27-7.48(\mathrm{~m}, 8 \mathrm{H}, \mathrm{m}-, \mathrm{p}-\mathrm{PhCO}+$ m-, p-Ph + pyr-CH + NH) , $5.31\left(\mathrm{dt}, \mathrm{J}_{\alpha, \mathrm{NH}} 7.7, \mathrm{~J}_{\alpha, \beta} 5.4,1 \mathrm{H}\right.$, $\alpha-\mathrm{H}$), 3.66 ($\mathrm{s}, 3 \mathrm{H}$, ester) and 3.56 (dd, J $\mathrm{J}_{\mathrm{k}, \mathrm{L}} 5.4, \mathrm{~J}_{\text {gem }} 15.4,2 \mathrm{H}$, $\left.\beta-\mathrm{H}_{2}\right)$.

R eferences

1 D. G. M artin, D. J. Duchamp and C. G. Chichester, Tetrahedron L ett., 1973, 2549
2 J. J. H ansen and P. K rogsgaard-L arsen, J. Chem. Soc., Perkin Trans. 1, 1980, 1826.
3 P. K rogsgaard-Larsen, E. Ø. Nielsen and D. R. Curtis, J. M ed. C hem., 1984, 27, 585
4 P. K rogsgaard-L arsen, T. H onoré, J. J. H ansen, D. R. Curtis and D. L odge, N ature (L ondon), 1980, 284, 64.

5 P. K rogsgaard-L arsen, L. Brehm, J. S. Johansen, P. Vinzents, J. L auridsen and D. R. Curtis, J. M ed. C hem., 1985, 28, 668

6 J. M. M artinez M artos, M. J. Ramirez Exposito, M. Arrazola Saniger and J. M. R amirez H uerta, R ev. Clin. Exp., 1996, 196, 113.
7 M. Sugahara, S. Shibanoki, A. M atsumoto, T. Kubo and K . Ishikawa, N euroscience (O kayama, J pn.), 1995, 21(Suppl), P127.
8 M. M orari, G. Calo, L. Ferraro, A . Fabrizi, N. A cciarri, G. Piazza, C. Bianchi and L. Beani, N eurochem. Int., 1995, 26, 77.

9 K. A . Trujillo and H. A kil, Drug A lcohol Depend., 1995, 38, 139
10 J. E. D olfini, H. E. Applegate, G. Bach, H. Basch, J. Bernstein, J. Schwartz and F. Weisenborn, J. M ed. Chem., 1971, 14, 117

11 G. R . N agarajan, L. Diamond and S. Ressler, J. Org. Chem., 1973, 38, 621
12 R . Johnson and J. F. K oerner, J. M ed. C hem., 1988, 31, 2057
13 R. G melin, Z. P hysiol. Chem., 1959, 316, 164.
14 E. A . Bell, Biochim. Biophys. Acta, 1961, 47, 602.
15 E. A. Bell and R . G. Foster, N ature, 1962, 194, 91
16 J. H. D ewar and G. Shaw, J. Chem. Soc., 1962, 583.
17 W. J. H aggerty, J r., R . H. Springer and C. C. Cheng, J. H eterocycl. Chem., 1965, 2, 1
18 G. Z vilichovsky and V. G urvich, Tetrahedron, 1995, 51, 5479
19 G. Zvilichovsky and V. Gurvich, J. Chem. Soc., Perkin Trans. 1, 1995, 2509.
20 G. Zvilichovsky and V. Gurvich, Tetrahedron, 1997, in the press.
21 G. Zvilichovsky, V. Gurvich and S. Segev, J. Org. Chem., 1995, 60, 5250.

22 G. Zvilichovsky and V. Gurvich, J. Org. C hem., 1996, 61, 3212.
23 A. I. Vogel, Text-book of Practical Organic Chemistry, Longman and G reen, L ondon-N ew York-Toronto, p. 923.

Paper 6/04879]
R eceived 11th J uly 1996
A ccepted 22nd N ovember 1996

